Spacetime finite element methods for control problems subject to the wave equation

نویسندگان

چکیده

We consider the null controllability problem for wave equation, and analyse a stabilized finite element method formulated on global, unstructured spacetime mesh. prove error estimates approximate control given by computational method. The proofs are based regularity properties of Hilbert Uniqueness Method, together with stability numerical scheme. Numerical experiments illustrate results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

Adaptive Galerkin Finite Element Methods for the Wave Equation

This paper gives an overview of adaptive discretization methods for linear second-order hyperbolic problems such as the acoustic or the elastic wave equation. The emphasis is on Galerkin-type methods for spatial as well as temporal discretization, which also include variants of the Crank-Nicolson and the Newmark finite difference schemes. The adaptive choice of space and time meshes follows the...

متن کامل

Adaptive Finite Element Methods for Multiphysics Problems Adaptive Finite Element Methods for Multiphysics Problems

In this thesis we develop and evaluate the performance of adaptive finite element methods for multiphysics problems. In particular, we propose a methodology for deriving computable error estimates when solving unidirectionally coupled multiphysics problems using segregated finite element solvers. The error estimates are of a posteriori type and are derived using the standard framework of dual w...

متن کامل

Superconvergence of mixed finite element methods for optimal control problems

In this paper, we investigate the superconvergence property of the numerical solution of a quadratic convex optimal control problem by using rectangular mixed finite element methods. The state and co-state variables are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Some realistic regularity a...

متن کامل

Adaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems

We will investigate the adaptive mixed finite element methods for parabolic optimal control problems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed finite element spaces, and the control is approximated by piecewise constant elements. We derive a posteriori error estimates of themixed finite element solutions for optimal control problems. Such a posteriori ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations

سال: 2023

ISSN: ['1262-3377', '1292-8119']

DOI: https://doi.org/10.1051/cocv/2023028